Tävla och vinn ett solcellspaket

Nu kommer nya batterier för energilagring

Batterier för energilagring

Nu kommer nya batterier för energilagring

I takt med utbyggnaden av förnybar el från sol och vind ökar behovet av energilagring. Nu utvecklas nya typer av batterier – några i sig själva förnybara.

Andelen förnybar el, främst producerad med sol-, vind- och vattenkraft, ökar i världen. Men el från sol- och vindkraft produceras och konsumeras i stunden och inte alltid när den behövs. Därför ökar behovet av att kunna lagra elenergin från en dag till en annan, eller ännu längre tid. Och därmed behöver teknikerna för energilagring utvecklas.

Störst kapacitet att lagra energi på den globala marknaden har dock vattenkraften. I pumpvattenkraftverk lagras vatten i dammar för senare omvandling till el. Andra storskaliga lagringstekniker är ”power-to-gas“, tryckluft och svänghjul, men som komplement behövs energilagring i form av batterier. Inte minst för begränsade utrymmen.

Några av de batterier som rönt stor uppmärksamhet på senare år är algbatteriet, pappersbatteriet och giftfria batterier med komponenter av järn, magnesium, alfalfagroddar och tallkåda.

Dessa ofta små och tunna batterier kan inte lagra så mycket energi, men kan ändå få en viktig roll i exempelvis medicinsk teknik och bärbar utrustning. Batterierna kan driva termometrar och Led-lampor eller sättas in i förpackningar och leksaker.

Viktiga målsättningar i utvecklingen är att batterierna blir billiga att tillverka och görs av material som det finns gott om på jorden, alltså inga sällsynta metaller. Batterierna ska helst också gå att återvinna helt eller delvis.

Ännu så länge är litium-jonbatterier den bästa tillgängliga teknik för ellagring, eftersom dessa kan lagra mycket energi i en liten volym, enligt batteriforskaren Kristina Edström, professor i oorganisk kemi vid Ångströmslaboratoriet i Uppsala.

– I så kallade smarta städer kommer back-up-lagring av el i byggnader att bli vanligt. Det passar bra i kombination med exempelvis solceller, säger hon.

Enligt en studie gjord av elkraftbranschens intresseorganisation Power Circle räcker det med förhållandevis små batterier för att jämna ut effektbehovet i fastigheter. För villor med fjärr- eller bergvärme är batterier med lagringskapacitet på mellan fyra och nio kilowattimmar tillräckligt för att minska effekttopparna med 40 procent.

Förväntningarna på litium-jonbatterier är stora och det spekuleras ofta kring hur mycket energimängden kan öka i batterierna. Ett mål är batterier med tio gånger högre energidensitet än idag, vilket skulle motsvara energidensiteten i bensin och öka räckvidden hos elbilar rejält.

Men det kan bli svårt att nå dit, menar Kristina Edström.
– Batteriernas kapacitet kan vara fördubblad om fem år, men knappast mer, säger hon.

Teknik för energilagring

I pumpkraftverk lagras vatten i dammar för att vid behov omvandlas till el.

Vid ”power-to-gas” omvandlas el till vätgas eller metan för lagring och distribution i gasnät.

Tryckluftslagring är ännu så länge vanligast i USA och Tyskland och går ut på att luft komprimeras med hjälp av överskottsel och hålls trycksatt i bergrum, tryckkärl eller rörledningar. När elbehov uppstår hettas den komprimerade luften upp, expanderar och leds till en turbin som producerar el.

Flödesbatterier har, till skillnad från andra batterier, flytande elektroder som kan lagras utanför battericellen. Det möjliggör stor lagringsvolym. Flödesbatterierna har även kort reaktionstid och lång livslängd. Till nackdelarna hör en förhållandevis låg energidensitet och att de är för stora för användning bärbara apparater.

Svänghjul lagrar energi i form av rörelseenergi. En rotor med stor massa spinner snabbt och utan motstånd i magnetiska kullager. När man tillför energi spinner rotorn snabbare och lagrar då energi. För att utvinna energi bromsar man rotorn. Storskaliga svänghjulslösningar används till exempel för frekvensreglering i stadsnät.

Superkondensatorer har hög energidensitet och klarar över en miljon laddningscykler under en livstid.

Magnetisk energilagring med hjälp av supraledare, Smes, bygger på momentana laddnings- och urladdningscykler och används främst i kombination med högspänningsinstallationer. Smes är vanligtvis en småskalig lagringslösning med maxkapacitet runt 10 megawatt.

Källa: forskning.se

Liknande inlägg

Lämna ett svar

E-postadressen publiceras inte. Obligatoriska fält är märkta *